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Abstract—This article characterizes the energy-related control-
lability of composite complex networks. We consider a class of
composite networks constructed from simple factor networks via
Cartesian product. The considered factor networks are leader-
follower signed networks with neighbor-based Laplacian dynam-
ics, adopting positive and negative edges to capture cooperative
and competitive interactions among network units. Different from
most existing works focusing on classical controllability, this ar-
ticle investigates the controllability of composite networks from
energy-related perspectives. Specifically, controllability Gramian-
based metrics, including average controllability and volumetric
control energy, are characterized based on the Cartesian graph
product, which reveals how the energy-related controllability of
a composite network can be inferred from the spectral proper-
ties of the local factor systems. These results are then extended
to layered control networks, a special, yet widely used, network
structure in many man-made systems. Since structural balance is
a key topological property of signed networks, a necessary and
sufficient condition to verify the structural balance of composite
signed networks is developed, which is applicable to generalized
graph product.

Index Terms—Energy-related network controllability, graph
product, signed complex networks.

I. INTRODUCTION

C OMPLEX networks can effectively model a variety of natural
and man-made systems. Owing to tremendous application po-

tential, growing research has been devoted to investigating structural
and functional properties of complex networks. From the viewpoint of
advancing design and control of complex networks, a property that is of
particular interest to us is the controllability of complex networks, that
dictates the ability to steer a network to a desired behavior via external
controls.
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Characterizing the controllability of complex networks is challeng-
ing, since complex networks are often constructed of multiple factor
systems dynamically interacting among themselves. The factor systems
can be basic units such as neurons in a brain network [1], or basic struc-
tures consisting of a number of units forming the building blocks of the
network such as layered structures in power networks [2]. The dynamics
of factors and the interactions among factors, as well as the intrinsic un-
derlying network structures, pose significant challenges in investigating
network controllability. In addition, such networks are often large-scale,
for instance, with hundreds of drones/robots in a multirobot system,
which further complicates the analysis of composite networks.

It has been observed that many complex systems can be constructed
and analyzed through simple subsystems (i.e., factors), where core
properties of factors are preserved in the composite system. For ex-
ample, the stability of composite feedback systems can be analyzed
based on its factor systems via small-gain theorem and composite
Lyapunov functions [3]. Recently, graph products have been explored
to construct and reveal structural and functional relationships between
factor systems and the associated composite system. In [4]–[7], clas-
sical controllability and observability of a composite network were
characterized based on its factor networks. In [8], the verification and
prediction of the structural balance of signed networks were studied
via the Cartesian product. In a recent work [9], generalized graph
product, including Cartesian, direct, and strong product, were utilized to
reveal the spectral and controllability properties of composite systems.
However, the aforementioned results mainly focus on the classical
controllability of composite networks.

Besides classical controllability analysis [10]–[18], stemming from
practical applicability, an important aspect that needs to be considered is
the energy needed for network control. Various metrics have been devel-
oped to quantify the energy needed in network control. The properties
of the controllability Gramian, such as its minimum eigenvalue [19], the
trace of its inverse [20], and the condition number [21], have been ex-
plored to characterize the control energy. Representative results include
the minimal control energy [22]–[28], energy-constrained controllabil-
ity [29]–[32], and the joint consideration of network controllability and
energy efficiency [33]. Although significant progress has been made in
the aforementioned results, energy-related controllability has remained
largely uninvestigated for composite complex networks.

This article characterizes the energy-related controllability of com-
posite complex networks. In particular, we consider a class of com-
posite networks constructed from simple factor networks via Cartesian
product. The factor network is a leader-follower network with neighbor-
based Laplacian feedback, and allows positive and negative edges to
capture cooperative and competitive interactions among network units.
Due to the graph product, the resulting composite network is a signed
leader-follower network. Graph product approaches are leveraged to
explore how the energy-related controllability of the composite network
can be inferred from its factor systems. Specifically, controllability
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Fig. 1. Factor graphs (a) and (b), and their product graph, (c) G1 �G2, (d) G1 × G2, and (e) G1 � G2.

Gramian based metrics, including average controllability and volumet-
ric control energy, are characterized based on the Cartesian graph prod-
uct, which reveals how the energy-related controllability of a composite
network can be inferred from the spectrum of the local factor systems.
These results are then extended to layered control networks, a special,
yet widely, used network structure in many man-made systems. Since
structural balance is a key topological property of signed networks, a
necessary and sufficient condition in verifying the structural balance of
a signed composite complex network is developed, which is applicable
to general graph product.

A crucial benefit of using graph product is that the global properties,
such as average controllability and volumetric control energy, of the
composite networks can be inferred from its local factor graphs, which
provides a practical means to analyze large-scale and complicated
networks from its relatively simple factor systems. This article is closely
related to [4]. However, the present article focuses on characterizing
energy-related measures of network controllability, i.e., the energy
needed in network control. Applications, such as network topology
design and leader selection, are discussed to demonstrate how factor
graphs can be individually designed based on the developed character-
izations to improve overall energy-related controllability of the com-
posite system. In addition, signed networks can model a large class of
networks with cooperative and competitive interactions among network
units, such as social networks and resilient networks [34]. Therefore,
the developed energy-related characterizations are not only applicable
to competitive networks with possible antagonistic interactions, but also
cooperative unsigned networks (i.e., a special case of signed networks
with nonnegative edge weights).

II. PRELIMINARIES

Complex networks can be synthesized from a set of smaller size
factor graphs via graph product. Consider two undirected graphsG1 and
G2. Let G = G1�G2 denote the composite graph, where � denotes a
generalized graph product, including the Cartesian productG1 �G2, di-
rect productG1 × G2, and strong productG1 � G2, i.e.,� ∈ {�,×,�}.
Throughout the rest of this article, the generalized graph product�will
be used if the developed result is applicable to any product of{�,×,�},
otherwise specific graph product notation will be used. Examples of
Cartesian, direct, strong product are illustrated in Fig. 1. Note that
these graph products are commutative and associative, i.e., G1�G2

and G2�G1 are isomorphic, and (G1�G2)�G3 and G1�(G2�G3) are
isomorphic for any factor graphs G1, G2, G3. More details of graph
product can be found in [35].

Consider two matrices A1 ∈ Rn×n and A2 ∈ Rm×m. The Kro-
necker product of A1 and A2 is denoted by A1 ⊗A2 ∈ Rnm×nm.
Further, the Kronecker sum of A1 and A2 is defined as A1 ⊕A2 =

A1 ⊗ Im + In ⊗A2, where Iu is a u× u identity matrix. The Kro-
necker product has the following properties: (A1 ⊗A2)(A3 ⊗A4) =
(A1A3)⊗ (A2A4) and eA1⊕A2 = eA1 ⊗ eA2 . The spectrum of a ma-
trix A is denoted as eig(A), i.e., the set of eigenvalues of A. Let Ai,j

denote the (i, j)th entry of A. The ith row and jth column of A are
denoted as Ai,: and A:,j , respectively. The trace and determinant of A
are denoted as tr(A) and detA, respectively.

III. PROBLEM FORMULATION

A. Leader-Follower Signed Factor Network

Consider a complex network represented by an undirected signed
graph G = (V, E ,A), where the node set V = {v1, . . . , vn} and the
edge set E ⊆ V × V represent the network units and their interactions,
respectively. The interactions are captured by the adjacency matrix
A = [aij ] ∈ Rn×n, where aij �= 0 if (vi, vj) ∈ E and aij = 0 other-
wise. No self-loop is considered, i.e., aii = 0∀i = 1, . . . , n. Different
from many existing results considering exclusively nonnegative aij

(i.e., an unsigned graph), this article adopts aij ∈ {±1} to capture
cooperative and competitive interactions between network units1. Let
di =

∑
j∈Ni

|aij |, whereNi = {vj |(vi, vj) ∈ E} denotes the neighbor
set of vi and |aij | denotes the absolute value of aij . The graph Lapla-
cian of G is defined as L(G) � D −A, where the in-degree matrix
D � diag{d1, . . . , dn} is a diagonal matrix. Since G is undirected, the
graph Laplacian L(G) is symmetric. Note that, in unsigned networks,
the Laplacian matrix will have negative off-diagonal entries. Hence,
the Laplacian of a signed network will, in general, have positive and
negative off-diagonal entries, which indicates that zero is no longer a
default eigenvalue as in the case of unsigned graphs.

Let x(t) ∈ Rn denote the stacked system states. Consider a set
K = {vl1 , . . . , vlm} ⊆ V of nodes endowed with external control in-
puts (i.e., the leaders), where li, i = 1, . . .m, indicates the leader’s
index. Suppose the system states evolve according to the following
Laplacian dynamics:

ẋ(t) = −L (G)x(t) +Bu(t) (1)

where u(t) ∈ Rm is the external input, and B = [ el1 · · · elm ] ∈
Rn×m is the input matrix with basis vector2 ei ∈ Rn, i = l1, . . . , lm,
indicating the leaders are endowed with external controls. For notational
simplicity, (L, B) will be used throughout this article to represent the
dynamics in (1).

IfB is well designed such that network controllability is ensured, the
system state can be driven from an initial state x(0) ∈ Rn to any target

1For ease of presentation, aij ∈ {±1} is used in this article. The developed
results still hold if aij ∈ R.

2A basis vector ei ∈ Rn has zero entries except for the ith entry being one.
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state xt ∈ Rn via external input u(t). As indicated in [36], assuming
x(0) = 0, the minimum control energy required to transit from x(0) to
xf is

E(t) = xT
f W−1(t)xf (2)

where W(t) =
∫ t

0
e−LτBBT e−LT τdτ denotes the controllability

Gramian. In this article we focus on the infinite horizon case, i.e.,
t → ∞, due to the consideration of asymptotic or exponential con-
vergence/stability of dynamic systems.

Since the controllability Gramian provides an energy-related mea-
sure of network control, various metrics have been developed based
on W . Typical control energy metrics include average controllability
tr(W) and volumetric control energy log detW [20]. Due to the trace,
tr(W) provides an overall measure of energy expenditure in all direc-
tions in the state space. The zero eigenvalues ofW imply uncontrollable
directions (i.e., requiring infinite control energy) in the state space.
Thus, the smaller the eigenvalue of the inverse of W , the more the
control energy needed to transit system states in the corresponding
direction. The determinant of W measures the volume of the ellipsoid
containing the target states that can be reached with unit or less control
energy. If a system is uncontrollable, the ellipsoid volume is zero,
which implies detW = 0. Since the logarithm is monotone, log detW
implies the associated volume in the controllable subspace. Based on
tr(W) and log detW, the subsequent effort will focus on characterizing
energy-related controllability of composite complex networks.

B. Composite Complex System

Direct analysis of energy-related controllability of a composite net-
work can be challenging if the composite network is of large size.
Hence, the objective is to characterize the energy-related controllability
of the composite system by inferring from its factor systems, taking
advantage of the smaller size of the factor systems. As discussed in [4]
and [37], a composite network can be decomposed into factor systems
in polynomial time.

Without loss of generality, the subsequent development focuses on
a composite system (L(G), B) constructed by the Cartesian product
of two factor systems. The case of two factor systems is adopted
for the simplicity of presentation and is not restrictive, since a gen-
eral composite system with many factor systems can be realized
via sequential composition. Particularly, consider two factor systems
(L(G1), B1) and (L(G2), B2), whereG1 hasn nodes with p leaders and
G2 has m nodes with q leaders, i.e., L(G1) ∈ Rn×n, L(G2) ∈ Rm×m,
B1 = [ el1

1
· · · el1p ] ∈ Rn×p and B2 = [ el2

1
· · · el2q ] ∈ Rm×q . The

basis vectors ei, i ∈ {l11, . . . , l1p}, and ej , j ∈ {l21, . . . , l2q}, indicate
the leader nodes vi and vj in G1 and G2, respectively. For notational
simplicity, (L1, B1) and (L2, B2) will be used throughout this article
to represent the following system dynamics:

ẋ1(t) = −L1x1(t) +B1u(t)

ẋ2(t) = −L2x1(t) +B2u(t)

respectively, where x1(t) ∈ Rn and x2(t) ∈ Rm denote the stacked
system states. Based on the Cartesian product, the composite dynamics
(L(G), B) corresponding to G = G1�G2 can be written as

ẋ(t) = −L (G)x(t) +Bu(t)

= − (L1 ⊕ L2)x(t) + (B1 ⊗B2)u(t)
(3)

whereL(G1�G2) = L(G1)⊕ L(G2) is due to the fact that graph Lapla-
cians belong to the family of symmetry preserving representations3.

IV. ENERGY-RELATED CONTROLLABILITY OF CARTESIAN PRODUCT

GRAPH

This section focuses on the characterizations of energy-related con-
trollability of composite networks in (3). Specifically, the average
controllability and volumetric control energy of (L, B) are investigated
based on its factor systems (L1, B1) and (L2, B2).

Different from unsigned graphs whose graph Laplacian is positive
semidefinite by default, when considering signed networks, the graph
Laplacian L can be either positive semidefinite (i.e., G is structurally
balanced) or positive definite (i.e., G is structurally unbalanced) [34].
To streamline the work, the characterization of the structural balance
of the composite graph based on its factor graphs is shown in Sec-
tion VI. The subsequent development will focus on the cases that G is
structurally unbalanced, i.e., eig(L) contains only positive eigenvalues.
If G is structurally balanced, then, as shown in our recent work [33], a
structurally balanced graph can be converted to an unsigned graph under
gauge transformation [34], where many existing energy-related charac-
terizations (cf., [38] and [20]) can be immediately applied. In addition,
as shown in [30], [39], and[40], the reduced graph Laplacian can be
used, where the row and column associated with the zero eigenvalue are
removed from the graph Laplacian, so that a structurally balanced graph
can be treated as a structurally unbalanced graph via reduced Laplacian
matrix when deriving Gramian-based energy metrics. Therefore, we
mainly focus on the energy-related characterizations of structurally
unbalanced graphs.

A. Characterizations of Average Controllability

Before characterizing the average controllability of the composite
system (L, B) in (3), the following lemma from [41] is introduced.

Lemma 1: Consider two factor graphs G1 and G2 with n and m
nodes, respectively. Given the Cartesian product graphG = G1�G2, the
graph Laplacian L(G) takes the form of L = L1 ⊕ L2 = L1 ⊗ Im +
In ⊗ L2, where L1 and L2 are the graph Laplacian of G1 and G2,
respectively. The eigenvalues λk and eigenvectors uk of L are defined
as λk = μi + ηj and uk = ϑi ⊗ wj for k = 1, . . .mn, where (μi, ϑi),
i = 1, . . . , n, and (ηj , wj), j = 1, . . .m, represent the eigenpairs ofL1

and L2, respectively.
Lemma 1 shows how the eigenpairs ofL can be constructed from the

eigenpairs of L1 and L2. Let V = [ϑ1 · · ·ϑn] and W = [w1 · · ·wm]
denote the eigenvector matrices of L1 and L2, respectively. We start
from the case that each factor system contains a single leader, i.e.,
B1 = b1 = el1 and B2 = b2 = el2 with l1 ∈ {1, . . . , n} and l2 ∈
{1, . . . ,m}, where the basis vectors el1 and el2 indicate that vl1 and
vl2 are the leaders in G1 and G2, respectively. Based on Lemma 1, the
following theorem characterizes the average controllability of (L, bl),
where bl = el1 ⊗ el2 ∈ Rmn determines the leader vl in G.

Theorem 1: Provided two factor systems (L(G1), b1) and
(L(G2), b2), the average controllability of the composite system
(L(G1 �G2), bl) in (3) can be characterized as

tr (W) =
n∑

i=1

m∑
j=1

1

2 (μi + ηj)
V 2
l1,i

W 2
l2,j

(4)

where W is the controllability Gramian of (L, bl), μi, i = 1, . . . , n,
and ηj , j = 1, . . .m, are the spectrum of L1 and L2, respectively, and

3A matrix L(G) is symmetry preserving if, for all permutation σ ∈ Aut(G),
with the corresponding permutation matrix J , L(G)J = JL(G).
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Vl1,i and Wl2,j represent the (l1, i)th entry and (l2, j)th entry of V and
W , respectively.

Proof: Consider the composite system (L, bl). Since L is sym-
metric, it can be written as L = UΛUT ∈ Rmn×mn, where Λ =
diag{λ1, . . . , λmn} ∈ Rmn×mn is a diagonal matrix containing the
eigenvalues of L and U = [u1 · · · umn ] ∈ Rmn×mn is the orthog-
onal eigenvector matrix of L. Based on (3) and using the fact that
e−Lτ = e−UΛUT τ = Ue−ΛτUT , the controllability Gramian can be
written as

W =

∫ ∞

0

e−LτblbTl e
−Lτdτ = UΓUT (5)

where

Γ =

∫ ∞

0

e−ΛτUT blb
T
l Ue−Λτdτ. (6)

From (6), the ijth entry of Γ is

Γi,j =

∫ ∞

0

e−λiτ−λjτUl,iUl,jdτ =
1

λi + λj

Ul,iUl,j (7)

whereUl,i andUl,j are the (l, i)th and (l, j)th entries ofU , respectively.
Since the trace is invariant under cyclic permutations, from (5), the

average controllability of (L, bl) is

tr (W) = tr
(
UΓUT

)
= tr

(
ΓUTU

)
. (8)

Substituting (7) into (8) and using Lemma 1

tr (W) = tr (Γ) =
mn∑
k=1

1

2λk

U2
l,k

=

n∑
i=1

m∑
j=1

1

2 (μi + ηj)
V 2
l1,i

W 2
l2,j

(9)

where Vl1,i and Wl2,j are the (l1, i)th and (l2, j)th entries of the
eigenvector matrices of G1 and G2, respectively. �

Based on the single leader case in Theorem 1, the following corollary
considers multileader cases.

Corollary 1: Consider two factor systems (L(G1), B1) and
(L(G2), B2), where G1 has n nodes with p leaders and G2 has m
nodes with q leaders, i.e., B1 = [ el1

1
· · · el1p ] ∈ Rn×p and B2 =

[ el2
1
· · · el2q ] ∈ Rm×q where the basis vector ei, i ∈ {l11, . . . , l1p}, and

ej , j ∈ {l21, . . . , l2q}, indicate the leader nodes vi and vj in G1 and
G2, respectively. The average controllability of the composite system
(L(G1 �G2), B) in (3) can be characterized as

tr (W) =

p∑
k=1

q∑
l=1

n∑
i=1

m∑
j=1

1

2 (μi + ηj)
V 2
l1
k
,i
W 2

l2
l
,j

where Vl1
k
,i and Wl2

l
,j are the (l1k, i)th entry and (l2l , j)th entry of V

and W , respectively.
Corollary 1 can be proved following a similar procedure in

Theorem 1 and is thus omitted. A key observation from Theorem 1
and Corollary 1 is that, for a Cartesian product composite network, the
average controllability can be inferred from the eigenvalues of the factor
graph Laplacian and the associated rows of the eigenvector matrices
corresponding to the leaders. Hence, Theorem 1 and Corollary1 provide
a practical means to characterize tr(W) only based on the eigenvalues
and eigenvector matrices of L1 and L2, offering a bottom up approach
to reveal the properties of a global system from its local systems.

B. Characterizations of Volumetric Control Energy

This section characterizes the volumetric control energy of the
composite system (L, B) based on its factor systems (L1, B1) and
(L2, B2). Similarly, results on single leader case is developed first,
which are then extended to multiple leaders.

Theorem 2: Consider two factor systems (L(G1), b1) and
(L(G2), b2) and its corresponding composite system (L(G1 �G2), bl)
in (3). The volumetric control energy log detW of the composite
system can be characterized as

log detW = m log detW1 + n log detW2 + c

where W , W1, and W2 are controllability Gramians of the sys-
tems (L, bl), (L1, b1), and (L2, b2), respectively, and c = log det Γ−
m log det Γ1 − n log det Γ2 is a constant determined by eig(L1) and
eig(L2), with Γij = 1

λi+λj
, [Γ1]ij = 1

μi+μj
, [Γ2]ij = 1

ηi+ηj
.

Proof: From (5), the volumetric control energy of (L, bl) can be
written as

log detW = log
(
detU det ΓdetUT

)
= log det Γ (10)

where detU detUT = 1 is used since U is an orthogonal ma-
trix. From (7), Γ can be rewritten as Γ = UΓU , where U =
diag{Ul,1, Ul,2, . . . , Ul,mn} and Γ = [Γij ] ∈ Rmn×mn with Γij =

1
λi+λj

. Based on Γ, U , and (10)

log detW = log
(
detU det ΓdetU

)
= 2

mn∑
i=1

logUl,i + log det Γ. (11)

Expressions, similar to (11), can be obtained for factor systems (L1, b1)
and (L2, b2) as

log detW1 = log det
(
V Γ1V

)
= 2

n∑
i=1

log Vl1,i + log det Γ1,

log detW2 = log det
(
WΓ2W

)
= 2

m∑
i=1

logWl2,i + log det Γ2,

where V = diag{Vl1,1, Vl1,2, . . . , Vl1,n}, Γ1 ∈ Rn×n with
the ijth entry (Γ1)ij = 1

μi+μj
for i, j ∈ {1, . . . , n}, W =

diag{Wl2,1,Wl2,2, . . . ,Wl2,m}, and Γ2 ∈ Rm×m with the ijth
entry (Γ2)ij = 1

ηi+ηj
for i, j ∈ {1, . . . ,m}.

By Lemma 1, U = V ⊗W , and the fact that det(V ⊗W ) =
(detV )m(detW )n, log detW in (11) can be written in terms of
log detW1 and log detW2 as

log detW = log
(
det
(
V ⊗W

)
det Γdet

(
V ⊗W

))
= log

(
detV

)2˜m
+ log

(
detW

)2n
+ log det Γ

= 2m
n∑

j=1

log Vl1,j + 2n
m∑

k=1

logWl2,k + log det Γ

= m log detW1 −m log det Γ1

+ n log detW2 − n log det Γ2 + log det Γ

which completes the proof. �
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Example 1: Consider a multiagent system modeled by an m× n
grid graph. The goal is to identify a leader that enables energy-efficient
formation control, i.e., to drive the system to a desired formation with
energy considerations. According to Theorem 2, local factor systems
can be individually designed for improved volumetric control energy of
the composite system. Recall that the grid graph can be decomposed into
two path graphs of lengths m and n. Therefore, instead of investigating
the volumetric control energy of mn nodes, we only need to investigate
the factor path graphs and select the node with the highest volumetric
control energy as the leader.

The following theorem considers the case of multiple leaders.
Theorem 3: Consider two factor systems (L(G1), B1) and

(L(G2), B2), where G1 has p leaders and G2 has q leaders,
i.e., B1 = [ el1

1
· · · el1p ] ∈ Rn×p and B2 = [ el2

1
· · · el2q ] ∈ Rm×q .

Let (L(G), B) be the composite system formed by the Cartesian
product of (L(G1), B1) and (L(G2), B2), where B = B1 ⊗B2 =
[ el1 · · · elpq ] ∈ Rnm×pq . The volumetric control energy of the com-
posite system (L(G1 �G2), B) in (3) can be characterized as

log det (W) = log det
(
V̂ T ⊗ ŴTΓ V̂ ⊗ Ŵ

)
where V̂ , Ŵ , and Γ are matrices associated with the leaders of G.

Proof: Following a similar proof of Theorem 2, one
has log detW = log det(UΓUT ) = log det Γ where Γ =∫ ∞
0

e−ΛτUTBBTUe−Λτdτ with Λ = diag{λ1, . . . , λmn} ∈
Rmn×mn and U = [u1 · · · umn ] ∈ Rmn×mn being the eigenvalue
and eigenvector matrix of L(G), respectively. Similar to (10), Γ can be
written as

Γ = ÛTΓ Û (12)

where Û = [UT
l1
1
,:

…UT
l1pq ,:

]T denotes the matrix constructed by the rows

of U corresponding to the leaders of G.
Based on Lemma 1, it is evident that log detW of (L(G), B)

with multiple leaders can be inferred from its factor systems (i.e., the
eigenvalues and rows of the eigenvector matrices corresponding to the
leaders) by

log det
(
ÛTΓ Û

)
= log det

(
V̂ T ⊗ ŴTΓ V̂ ⊗ Ŵ

)
(13)

where V̂ = [V T
l1
1
,:

…V T
l1p,:

]T and Ŵ = [WT
l2
1
,:

…WT
l2q,:

]T are constructed

by the rows of V and W corresponding to the leaders of G1 and G2,
respectively. By Lemma 1, the term Γij = 1

λi+λj
can be replaced with

eig(L1) and eig(L2), so that the volumetric control energy of (L,G)
can be inferred by the spectral property of (L1,G1) and (L2,G2). �

Similar to Theorem 2, the volumetric control energy can be inferred
from the eigenvalues of the factor graph Laplacian and the associated
rows of the eigenvector matrices corresponding to the leaders.

V. ENERGY-RELATED CONTROLLABILITY OF LAYERED

CONTROL NETWORKS

Energy-related measures, i.e., average controllability and volumetric
control energy, are characterized in Section IV. This section extends
these characterizations to a special, yet widely used, class of networked
systems, namely layered control networks. A layered control network is
referred to a class of composite networks constructed by the Cartesian
graph product, where the composite system has repeated control struc-
ture of a factor system. Specifically, consider the same system captured
by (3). If the composite input matrix is B = In ⊗B2, the form of the
input matrix B2 is repeated in every G2 layer of the product graph
G1 �G2. In such networks, each layer shares the same topology of the
factor graph G2 and the layers are connected through the topology of

Fig. 2. Example of layered control network, where leaders are marked
in yellow. (a) G1 with B1 = I3, (b) G2 with B2 = [ 1 0 0 ]T , (c) G1 �G2

with B = I3 ⊗B2.

the factor graph G1. An illustrative example is provided in Fig. 2. Many
practical applications feature a layered control network, such as fault
detection [42], quantum computing networks [43], and smart sensor
networks [44]. Energy-related properties of layered control networks
are studied in this section.

Similar to the analysis in Section IV, we start with the single leader
case. By the definition of layered control network, the dynamics of the
composite system (L, B) is

ẋ(t) = −(L1 ⊕ L2)x(t) + (In ⊗ bl2)u(t) (14)

where (L1, In) and (L2, bl2) represent the factor systems over G1

and G2, respectively, and bl2 indicates the vl2 in G2 is the leader. It
is worth pointing out that the following development also applies to
the composite system (L, B) constructed by (L1, bl1) and (L2, In)
with B = bl1 ⊗ In, due to the permutation equivalence property of the
Kronecker product.

Lemma 2: Consider a composite layered control system (L(G), B)
with G = G1 �G2 and B = In ⊗ bl2 , where G1 and G2 are the factor
graphs and bl2 is the input matrix associated withG2. The controllability
Gramian W of (L, B) in (3) is

W(t) = (V ⊗W )Ψ
(
V T ⊗WT

)
where Ψ = diag{Ψ1,Ψ2, . . . ,Ψn} with (Ψk)ij =

Wl2,iWl2,j

2μk+ηi+ηj
, k =

1, . . . , n, i, j = 1, . . . ,m, where μk and ηi are the eigenvalues and
V ∈ Rn×n and W ∈ Rm×m are the eigenvector matrices of L1 and
L2, respectively.

Proof: Based on (5)

W =

∫ ∞

0

e−LτBBT e−Lτdτ

= U

(∫ ∞

0

e−ΛτUTBBTUe−Λτdτ

)
UT dτ (15)

where U and Λ are the eigenvector and eigenvalue matrices of L,
respectively. Since U = V ⊗W , (15) can be expanded as

W = V ⊗W

(∫ ∞

0

e−Λτ
(
V T ⊗WT

)
(In ⊗ bl2)

· (ITn ⊗ bTl2
)
(V ⊗W ) e−Λτdτ

)
V T ⊗WT
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= V ⊗W

(∫ ∞

0

e−Λτ
(
V T InI

T
n V
)

⊗ (WT bl2b
T
l2
W
)
e−Λτdτ

)
V T ⊗WT

= (V ⊗W )Ψ
(
V T ⊗WT

)
where

Ψ =

∫ ∞

0

e−ΛτIn ⊗ (WT bl2b
T
l2
W
)
e−Λτdτ.

Define Ψ = diag{Ψ1,Ψ2, . . . ,Ψn} = In ⊗ (WT bl2b
T
l2
W ) ∈

Rmn×mn, which is a block diagonal matrix with Ψi = WT
l2,:

Wl2,: ∈
Rm×m for i = 1, . . . , n, where Wl2,: ∈ Rm is the l2th row of
W . Thus, Ψ = diag{Ψ1,Ψ2, . . . ,Ψn} ∈ Rmn×mn is also a block
diagonal matrix with Ψi =

∫ ∞
0

e−ΛiτΨie
−Λiτdτ ∈ Rm×m for

i = 1, . . . , n, where Λ is rewritten as Λ = diag{Λ1,Λ2, . . . ,Λn} with
the diagonal entries of Λi ∈ Rm×m indicating the ((i− 1)m+ 1)th
to kmth eigenvalues of L. Let λk

i denote the ith diagonal entry of Λk.
Then, the entries of the kth block Ψk can be represented as

(Ψk)ij =
Wl2,iWl2,j

λk
i + λk

j

=
Wl2,iWl2,j

2μk + ηi + ηj
(16)

where λk
i = μk + ηi and λk

j = μk + ηj from Lemma 1 are used, where
μk, k = 1, . . . n is the eigenvalue of L1 while ηi and ηj for i, j =
1, . . . ,m are the eigenvalues of L2. �

Based on the controllability Gramian developed in Lemma 2, energy-
related measures are characterized in the following theorem.

Theorem 4: Consider a composite layered control system
(L(G1 �G2), B) with B = In ⊗ bl2 , where G1 and G2 are the factor
graphs and bl2 is the input matrix associated with G2 with vl2 being
the leader. The average controllability of (L, B) is characterized as

tr(W) =
∑n

k=1

∑m
j=1

W2
l2,j

2(μk+ηj)
, and the volumetric control energy of

(L, B) is characterized as

log det (W) = n log detW2 + c1

where c1 = −n log det Γ2 +
∑n

k=1 log det(Γk).
The proof of Theorem 4 is omitted, since it can be obtained using

Lemma 2 and following a similar proof as in Theorem 1 and Theorem
2. Theorem 4 indicates that the energy-related controllability of the
composite layered network can be determined by the eigenvalues of
the factor systems (i.e., eig(L1) and eig(L2)) and the l2th row of W
corresponding to the leader node vl2 in G2.

Theorem 4 can be trivially extended to multileader cases. To see
that, consider a composite layered control system (L(G), B) with the
input matrix B = In ⊗B2, where B2 = [ el2

1
· · · el2m2

] ∈ Rm×m2

indicates G2 contains a set of m2 leaders indexed by l2i , i = 1, . . . ,m2.
Based on Lemma 2, the controllability Gramian of (L(G), B) with
multiple leaders can be written as

W = (V ⊗W ) Ψ̃
(
V T ⊗WT

)
(17)

where Ψ̃ =
∫ ∞
0

e−ΛτIn ⊗ (WTB2B
T
2 W )e−Λτdτ. Similar to the proof

of Lemma 2, Ψ̃ = diag{Ψ̃1, Ψ̃2, . . . , Ψ̃n} is a diagonal matrix with ijth
entry of each block Ψ̃k, k = 1, . . . , n, defined as(

Ψ̃k

)
ij

=
Wl2

1
,iWl2

1
,j +Wl2

2
,iWl2

2
,j + · · ·+Wl2m2

,iWl2m2
,j

2μk + ηi + ηj
.

(18)

Since tr(W) and log det(W) are defined based on W given in (17) and
(18), following similar analysis as in Theorem 1, it is straightforward to
show that the tr(W) and log det(W) of (L(G), B) can be inferred from
the eigenvalues and the eigenvector matrices of the factor systems.

VI. STRUCTURAL BALANCE OF GENERAL PRODUCT GRAPHS

Other than the Cartesian product, composite systems can also be
constructed based on direct and strong product of factor systems.
Due to the importance of structural balance, this section develops a
necessary and sufficient condition to characterize the structural balance
of signed composite networks by its factor networks, which is generally
applicable to Cartesian, direct, and strong graph product.

Consider a graph represented by general product graphG = G1�G2,
where G1 = (V1, E1,A1) and G2 = (V2, E2,A2) are factor graphs. A
necessary and sufficient condition to characterize structural balance is
provided below.

Proposition 1: [34] A graph G = (V, E ,A) is structurally bal-
anced if and only if there exists a gauge transformation matrix Φ =
diag{σ1, . . . , σn} with σi ∈ {±1} such that ΦAΦ has nonnegative
entries.

Proposition 1 indicates that structural balance of G can be character-
ized based on its adjacency matrix A. When considering generalized
graph product �, as indicated in [9]

A = A (G1�G2)

= α1A1 ⊗ Im + α2In ⊗A2 + α3A1 ⊗A2 (19)

where α1, α2, α3 ∈ {0, 1}. Different graph products can be realized
through different combinations of αi for i = 1, 2, 3. For instance, the
adjacency matrix A of the Cartesian product �, direct product ×,
and strong product �, can be realized if [α1, α2, α3] take the value
of [1, 1, 0], [0, 0, 1], and [1, 1, 1], respectively.4 Although structural
balance has proven to be invariant under the Cartesian product G1 �G2

in [8], Theorem 5 extends the result in [8] to the generalized product
graph G1�G2 via gauge transformation.

Theorem 5: Consider two signed graphs G1 = (V1, E1,A1) and
G2 = (V2, E2,A2). The generalized product graph G = G1�G2 =
(V, E ,A) is structurally balanced if and only if G1 and G2 are struc-
turally balanced.

Proof: To obtain the necessary condition, supposeG1 andG2 are two
structurally balanced signed graphs. According to Proposition 1, there
exist gauge transformation matrices Φ1 and Φ2 such that Φ1A1Φ1 and
Φ2A2Φ2 have nonnegative entries. Defining a diagonal matrix Φ =
Φ1 ⊗ Φ2

ΦAΦ = (Φ1 ⊗ Φ2) (α1A1 ⊗ Im + α2In ⊗A2

+ α3A1 ⊗A2) (Φ1 ⊗ Φ2)

= α1Φ1A1Φ1 ⊗ Im + α2In ⊗ Φ2A2Φ2,

+ α3 (Φ1A1Φ1)⊗ (Φ2A2Φ2)

where the fact that Φ1Φ1 = In and Φ2Φ2 = Im are used. Since
α1, α2, α2 ∈ {0, 1}, it can be shown that α1Φ1A1Φ1 ⊗ Im, α2In ⊗
Φ2A2Φ2, and α3(Φ1A1Φ1)⊗ (Φ2A2Φ2) have nonnegative entries.
Therefore ΦAΦ is structurally balanced with the gauge transformation
matrix Φ by Proposition 1.

To show the sufficient condition, suppose the product graph G is
structurally balanced. By proposition 1, there exists a gauge transfor-
mation matrix Φ such that ΦAΦ has nonnegative entries. Assuming

4Other product graphs such as skew product and converse skew product can
be obtained when the vector takes the value [0, 1, 1] and [1, 0, 1], respectively.
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that Φ = Φ1 ⊗ Φ2 yields

ΦAΦ = α1ΦA1 ⊗ ImΦ+ α2ΦIn ⊗A2Φ+ α3ΦA1 ⊗A2Φ

= α1Φ1A1Φ1 ⊗ Im + α2In ⊗ Φ2A2Φ2,

+ α3 (Φ1A1Φ1)⊗ (Φ2A2Φ2)

where Φ1 and Φ2 are diagonal matrices with with ±1 as the di-
agonal entries. It can be verified that, if the (i, j)th entry of one
of α1Φ1A1Φ1 ⊗ Im, In ⊗ Φ2A2Φ2 and (Φ1A1Φ1)⊗ (Φ2A2Φ2) is
nonzero, the (i, j)th entry of the other two matrices must be zero.
In other words, the nonzero entries of ΦAΦ are determined by the
corresponding entries either from Φ1A1Φ1 ⊗ Im,In ⊗ Φ2A2Φ2, or
(Φ1A1Φ1)⊗ (Φ2A2Φ2). IfΦAΦ only has nonnegative entries, the en-
tries ofΦ1A1Φ1 ⊗ Im, In ⊗ Φ2A2Φ2, (Φ1A1Φ1)⊗ (Φ2A2Φ2)must
be all nonnegative, indicating Φ1 and Φ2 are the gauge transformation
matrices of A1 and A2, respectively. Therefore, both G1and G2 are
structurally balanced by Proposition 1. �

Remark 1: In the case of direct product, it is possible that the product
graph G becomes unconnected even if the factor graphs G1 and G2 are
connected. For such cases, Theorem 5 applies to each connected com-
ponent of G, i.e., each connected component is structurally balanced if
and only if the factor graphs G1 and G2 are structurally balanced. The
proof is straightforward by reorganizing ΦAΦ into a block diagonal
matrix via graph automorphism and thus omitted here.

Theorem 5 indicates that the structural balance of the composite
network G can be efficiently determined or constructed by the structural
balance properties of its factor graphs. Although only two factor graphs
are considered, Theorem 5 can be extended for the case of multiple
factor graphs obviously.

VII. CONCLUSION

Energy-related controllability measures, i.e., average controllability
and volumetric control energy, are characterized via graph product
approaches in this article. Since the present article is mainly developed
for undirected composite networks, additional research will consider
extending current results to directed composite networks.
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